5,500 research outputs found

    On the origin of the extremely different solubilities of polyethers in water

    Get PDF
    The solubilities of polyethers are surprisingly counter-intuitive. The best-known example is the difference between polyethylene glycol ([–CH2–CH2–O–]n) which is infinitely soluble, and polyoxymethylene ([–CH2–O–]n) which is completely insoluble in water, exactly the opposite of what one expects from the C/O ratios of these molecules. Similar anomalies exist for oligomeric and cyclic polyethers. To solve this apparent mystery, we use femtosecond vibrational and GHz dielectric spectroscopy with complementary ab initio calculations and molecular dynamics simulations. We find that the dynamics of water molecules solvating polyethers is fundamentally different depending on their C/O composition. The ab initio calculations and simulations show that this is not because of steric effects (as is commonly believed), but because the partial charge on the O atoms depends on the number of C atoms by which they are separated. Our results thus show that inductive effects can have a major impact on aqueous solubilities

    Coupling between aging and convective motion in a colloidal glass of Laponite

    Get PDF
    We study thermal convection in a colloidal glass of Laponite in formation. Low concentration preparation are submitted to destabilizing vertical temperature gradient, and present a gradual transition from a turbulent convective state to a steady conductive state as their viscosity increases. The time spent under convection is found to depend strongly on sample concentration, decreasing exponentially with mass fraction of colloidal particles. Moreover, at fixed concentration, it also depends slightly on the pattern selected by the Rayleigh B\'{e}nard instability: more rolls maintain the convection state longer. This behavior can be interpreted with recent theoretical approaches of soft glassy material rheology.Comment: Eur. Phys. J. B 55, 101-107 (2007) The original publication is available at http://www.springerlink.co

    Picosecond non-linear infrared spectroscopy in zeolites and solution

    Get PDF

    Compaction of Quasi One-Dimensional Elastoplastic Materials

    Get PDF
    Insight in the crumpling or compaction of one-dimensional objects is of great importance for understanding biopolymer packaging and designing innovative technological devices. By compacting various types of wires in rigid confinements and characterizing the morphology of the resulting crumpled structures, here we report how friction, plasticity, and torsion enhance disorder, leading to a transition from coiled to folded morphologies. In the latter case, where folding dominates the crumpling process, we find that reducing the relative wire thickness counter-intuitively causes the maximum packing density to decrease. The segment-size distribution gradually becomes more asymmetric during compaction, reflecting an increase of spatial correlations. We introduce a self-avoiding random walk model and verify that the cumulative injected wire length follows a universal dependence on segment size, allowing for the prediction of the efficiency of compaction as a function of material properties, container size, and injection force.Comment: 7 pages, 6 figure

    Microwave Conductivity due to Impurity Scattering in a d-wave Superconductor

    Full text link
    The self-consistent t-matrix approximation for impurity scattering in unconventional superconductors is used to interpret recent measurements of the temperature and frequency dependence of the microwave conductivity of YBCO crystals below 20K. In this theory, the conductivity is expressed in terms of a fequency dependent single particle self-energy, determined by the impurity scattering phase shift which is small for weak (Born) scattering and approaches π/2\pi / 2 for unitary scattering. Inverting this process, microwave conductivity data are used to extract an effective single-particle self-energy and obtain insight into the nature of the operative scattering processes. It is found that the effective self-energy is well approximated by a constant plus a linear term in frequency with a small positive slope for thermal quasiparticle energies below 20K. Possible physical origins of this form of self-energy are discussed.Comment: 5 pages, 4 figure

    Survival of the d-wave superconducting state near the edge of antiferromagnetism in the cuprate phase diagram

    Get PDF
    In the cuprate superconductor YBa2Cu3O6+xYBa_2Cu_3O_{6+x}, hole doping in the CuO2CuO_2 layers is controlled by both oxygen content and the degree of oxygen-ordering. At the composition YBa2Cu3O6.35\rm YBa_2Cu_3O_{6.35}, the ordering can occur at room temperature, thereby tuning the hole doping so that the superconducting critical temperature gradually rises from zero to 20 K. Here we exploit this to study the c-axis penetration depth as a function of temperature and doping. The temperature dependence shows the d-wave superconductor surviving to very low doping, with no sign of another ordered phase interfering with the nodal quasiparticles. The only apparent doping dependence is a smooth decline of superfluid density as Tc decreases.Comment: 4 pages, 3 figure
    • …
    corecore